CONSTRUCTIONS OF POTENTIALLY EVENTUALLY POSITIVE SIGN PATTERNS WITH REDUCIBLE POSITIVE PART

MARIE ARCHER*, MINERVA CATRAL†, CRAIG ERICKSON‡, RANA HABER§, LESLIE HOGBEN¶, XAVIER MARTINEZ-RIVERA∥, AND ANTONIO OCHOA**

Abstract. Potentially eventually positive (PEP) sign patterns were introduced in “Sign patterns that allow eventual positivity,” Electronic Journal of Linear Algebra, 19 (2010): 108–120, where it was noted that A is PEP if its positive part is primitive, and an example was given of a 3×3 PEP sign pattern with reducible positive part. We extend these results by constructing $n \times n$ PEP sign patterns with reducible positive part, for every $n \geq 3$.

Key words. potentially eventually positive, PEP, sign pattern, matrix, digraph

1. Introduction. A sign pattern matrix (or sign pattern) is a matrix having entries in $\{+, -, 0\}$. For a real matrix A, $\text{sgn}(A)$ is the sign pattern having entries that correspond to the signs of the entries in A. If A is an $n \times n$ sign pattern, the qualitative class of A, denoted $Q(A)$, is the set of all $A \in \mathbb{R}^{n \times n}$ such that $\text{sgn}(A) = A$, where $\text{sgn}(A) = [\text{sgn}(a_{ij})]$; such a matrix A is called a realization of A. Qualitative matrix problems were introduced more than sixty years ago by Samuelson in the mathematical modeling of problems from economics [7]. Sign pattern matrices have useful applications in economics, population biology, chemistry and sociology. If P is a property of a real matrix, then a sign pattern A is potentially P (or allows P) if there is some $A \in Q(A)$ that has property P.

The spectrum of a square matrix A, denoted $\sigma(A)$, is the multiset of the eigenvalues of A, and the spectral radius of A is defined as $\rho(A) = \max\{|\lambda| : \lambda \in \sigma(A)\}$.

*Department of Mathematics, Columbia College, Columbia, SC 29203, USA (mariemtz@iastate.edu).
†Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, USA (catralm@xavier.edu).
‡Department of Mathematics, Iowa State University, Ames, IA 50011, USA (craig@iastate.edu).
§Department of Mathematics, California State Polytechnic University, Pomona, CA 91768, USA (rhaber2010@my.fit.edu).
¶Department of Mathematics, Iowa State University, Ames, IA 50011, USA (lhogben@iastate.edu) & American Institute of Mathematics, 360 Portage Ave, Palo Alto, CA 94306 (hogben@aimath.org).
∥Department of Mathematical Sciences, University of Puerto Rico, Mayagüez, P.R. 00681, USA (xavier.martinez@upr.edu).
**Department of Mathematics, California State Polytechnic University, Pomona, CA 91768, USA (aochoa@csupomona.edu).
Matrix A has the strong Perron-Frobenius property if $\rho(A) > 0$ is a simple strictly dominant eigenvalue of A that has a positive eigenvector. A matrix $A \in \mathbb{R}^{n \times n}$ is eventually positive if there exists a $k_0 \in \mathbb{Z}^+$ such that for all $k \geq k_0$, $A^k > 0$, where the inequality is entrywise. Handelman developed the following test for eventual positivity in [2]: a matrix A is eventually positive if and only if both A and A^T satisfy the strong Perron-Frobenius property. If there exists a k such that $A^k > 0$ and $A^{k+1} > 0$, then A is eventually positive [4]. A sign pattern \mathcal{A} is potentially eventually positive (PEP) if there exists an eventually positive realization $A \in Q(\mathcal{A})$.

For a sign pattern $\mathcal{A} = [\alpha_{ij}]$, define the positive part of \mathcal{A} to be $\mathcal{A}^+ = [\alpha^+_{ij}]$ and the negative part of \mathcal{A} to be $\mathcal{A}^- = [\alpha^-_{ij}]$, where

$$
\alpha^+_{ij} = \begin{cases} + & \text{if } \alpha_{ij} = +, \\
0 & \text{if } \alpha_{ij} = 0 \text{ or } \alpha_{ij} = -. \end{cases} \quad \text{and} \quad \alpha^-_{ij} = \begin{cases} - & \text{if } \alpha_{ij} = -, \\
0 & \text{if } \alpha_{ij} = 0 \text{ or } \alpha_{ij} = +. \end{cases}
$$

Clearly $\mathcal{A} = \mathcal{A}^+ + \mathcal{A}^-$. For a matrix $A \in \mathbb{R}^{n \times n}$, the positive part A^+ of A and negative part A^- of A are defined analogously, and $A = A^+ + A^-$.

A digraph $\Gamma = (V, E)$ consists of a finite, nonempty set V of vertices, together with a set $E \subseteq V \times V$ of arcs. Note that a digraph allows loops (arcs of the form (v, v)) and may have both arcs (v, w) and (w, v) but not multiple copies of the same arc. Let $A = [a_{ij}] \in \mathbb{R}^{n \times n}$. The digraph of A, denoted $\Gamma(A)$, has vertex set $\{1, \ldots, n\}$ and arc set $\{(i, j) : a_{ij} \neq 0\}$. If \mathcal{A} is a sign pattern, then $\Gamma(\mathcal{A}) = \Gamma(A)$ where $A \in Q(\mathcal{A})$. A digraph Γ is strongly connected if for any two distinct vertices v and w of Γ, there is a path in Γ from v to w.

A square matrix A is reducible if there exists a permutation matrix P such that

$$
PAP^T = \begin{bmatrix} A_{11} & 0 \\
A_{21} & A_{22} \end{bmatrix}
$$

where A_{11} and A_{22} are nonempty square matrices and 0 is a (possibly rectangular) block consisting entirely of zero entries, or A is the 1×1 zero matrix. If A is not reducible, then A is called irreducible. It is well known that for $n \geq 2$, A is irreducible if and only if $\Gamma(A)$ is strongly connected. For a strongly connected digraph Γ, the index of imprimitivity is the greatest common divisor of the lengths of the cycles in Γ. A strongly connected digraph is primitive if its index of imprimitivity is one; otherwise it is imprimitive. The index of imprimitivity of a nonnegative sign pattern \mathcal{A} is the index of imprimitivity of $\Gamma(\mathcal{A})$ and $\mathcal{A} \geq 0$ is primitive if $\Gamma(\mathcal{A})$ is primitive, or equivalently, if the index of imprimitivity of \mathcal{A} is one.

The study of PEP sign patterns was introduced in [1], where it was shown that if \mathcal{A}^+ is primitive, then \mathcal{A} is PEP, and where the first example of a PEP sign pattern...
with reducible positive part was given in: the 3×3 pattern

$$B = \begin{bmatrix} + & - & 0 \\ + & 0 & - \\ - & + & + \end{bmatrix}.$$

In Section 2 we extend the results of [1] by generalizing the 3×3 pattern B from [1] to a family of PEP sign patterns having reducible positive part for every order $n \geq 3$.

In section 3 we examine the effect of the Kronecker product on PEP sign patterns and obtain another method of constructing PEP sign patterns with reducible positive part.

2. A family of sign patterns generalizing B. The sign pattern B from [1] was the first PEP sign pattern with a reducible positive part. This sign pattern may be generalized by defining the $n \times n$ sign pattern

$$B_n = \begin{bmatrix} + & - & \cdots & - & 0 \\ + & 0 & \cdots & 0 & - \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ + & 0 & \cdots & 0 & - \\ - & + & \cdots & + & + \end{bmatrix}.$$

The following result, which is a special case of the Schur-Cohn Criterion (see, e.g., [5]), will be used in the proof that B_n is PEP.

Lemma 2.1. If the polynomial $f(x) = x^2 - \beta x + \alpha$ satisfies $|\beta| < 1 + \alpha < 2$, then all zeros of $f(x)$ lie strictly inside the unit circle.

It is well known that if the characteristic polynomial of A is $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ then $a_{n-k} = (-1)^kE_k(A)$, where $E_k(A)$ is the sum of the $k \times k$ principal minors of A (see, e.g., [3]).

Theorem 2.2. For $n \geq 3$ the $n \times n$ sign pattern B_n is PEP.

Proof. For $t > 0$, let $B_n(t)$ be the $n \times n$ matrix

$$B_n(t) = \begin{bmatrix} 1 + (n-2)t & -t & \cdots & -t & 0 \\ 1 + t & 0 & \cdots & 0 & -t \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 + t & 0 & \cdots & 0 & -t \\ -(n-2)t - \frac{1}{2}t^2 & t & \cdots & t & 1 + \frac{1}{2}t^2 \end{bmatrix}.$$

Then $B_n(t) \in Q(B_n)$, and 1 is an eigenvalue of $B_n(t)$ with positive right eigenvector 1 (the all ones vector) and positive left eigenvector $w = [(2n-5)/t, 1, \cdots , 1, (2n-4)/t]^T$.

3
We show that for some choice of \(t > 0 \), 1 is a simple strictly dominant eigenvalue of \(B_n(t) \) and hence \(B_n(t) \) is eventually positive. Since \(1 \in \sigma(B_n(t)) \) and rank \(B_n(t) \leq 3 \), the characteristic polynomial \(p_{B_n(t)}(x) \) of \(B_n(t) \) is of the form

\[
p_{B_n(t)}(x) = x^{n-3}(x-1)(x^2 - \beta x + \alpha) = x^n - (1 + \beta)x^{n-1} + (\alpha + \beta)x^{n-2} - \alpha x^{n-3}.
\]

Computing \(\alpha \) and \(\beta \) using the sums of principal minors to evaluate the characteristic polynomial gives

\[
\beta = \frac{1}{2} t^2 + (n-2) t + 1 \quad \text{and} \quad \alpha = (n-2)t(1 + 2t + \frac{1}{2}t^2). \quad \text{For } n > 3, \text{ setting } t = \frac{1}{2} (n - 2) \text{ gives } |\beta| < 1 + \alpha < 2 \text{ which, using Lemma 2.1, guarantees that the two non-zero eigenvalues of } B_n \text{ other than 1 have modulus strictly less than 1 (recall that a } 3 \times 3 \text{ eventually positive matrix } B_3 \in Q(B_3) \text{ was given in [1] so we have not been concerned with this case in choosing } t).\]

\[\Box\]

We illustrate this theorem with an example.

Example 2.3. Let \(n = 5 \). Following the proof of Theorem 2.2, we choose \(t = \frac{1}{6} \) and define

\[
B_5 = B_5(1/6) = \frac{1}{6} \begin{bmatrix} 9 & -1 & -1 & -1 & 0 \\ 7 & 0 & 0 & 0 & -1 \\ 7 & 0 & 0 & 0 & -1 \\ -\frac{37}{12} & 1 & 1 & 1 & \frac{73}{12} \end{bmatrix}.
\]

Moreover, we have

\[
\sigma(B_5) = \left\{ 1, \frac{1}{144} \left(109 + i \sqrt{2087} \right), \frac{1}{144} \left(109 - i \sqrt{2087} \right), 0, 0 \right\}
\]

\[
\approx \{ 1, 0.7569 + 0.3172i, 0.7569 - 0.3172i, 0, 0 \},
\]

and \([1 1 1 1]^T \text{ and } \left[\frac{5}{6} \frac{1}{36} \frac{1}{36} \frac{1}{36} \right]^T \) are right and left eigenvectors corresponding to \(\rho(B_5) = 1 \) respectively. Therefore \(B_5 \) and \(B_5^T \) have the strong Perron-Frobenius property, so \(B_5 \) is eventually positive by Handelman’s criterion.

In [1] it was shown that if the sign pattern \(\mathcal{A} \) is PEP, then any sign pattern achieved by changing one or more zero entries of \(\mathcal{A} \) to be non-zero is also PEP. Applying this to \(B_n \) yields a variety of additional PEP sign patterns having reducible positive part.

3. **Kronecker products.** The Kronecker product (sometimes called the tensor product) is a useful tool for generating larger eventually positive matrices and thus PEP sign patterns. The **Kronecker product** of \(A = [a_{ij}] \) and \(B = [b_{ij}] \) is defined as

\[
A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \cdots & a_{nn}B \end{bmatrix}.
\]
It is clear that if $A > 0$ and $B > 0$, then $A \otimes B > 0$. The following facts can be found in many linear algebra books, (see, e.g., [6]). For $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$, $(A \otimes B)^k = A^k \otimes B^k$. For $A, C, B,$ and D of appropriate dimensions, $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$. There exists a permutation matrix P such that $B \otimes A = P(A \otimes B)P^T$.

Proposition 3.1. If A and B are eventually positive matrices, then $A \otimes B$ is eventually positive.

Proof. Assume A and B are eventually positive matrices. Since A and B are eventually positive, there exists some $s_0, t_0 \in \mathbb{Z}$, with $s_0, t_0 > 0$, such that for all $s \geq s_0$ and $t \geq t_0$, $A^s > 0$ and $B^t > 0$. Set $k_0 = \max\{s_0, t_0\}$. Then for all $k \geq k_0$, $(A \otimes B)^k = A^k \otimes B^k > 0$. □

Corollary 3.2. If A and B are PEP sign patterns, then $A \otimes B$ is PEP.

If either A or B is a reducible matrix, then $A \otimes B$ is reducible since, without loss of generality, if

$$PAP^T = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix}$$

then

$$(P \otimes I)(A \otimes B)(P \otimes I)^T = \begin{bmatrix} A_{11} \otimes B & 0 \\ A_{21} \otimes B & A_{22} \otimes B \end{bmatrix}.$$

Thus Corollary 3.2 provides another way to construct PEP sign patterns having reducible positive part.

Example 3.3. Let $B = \frac{1}{100} \begin{bmatrix} 130 & -30 & 0 \\ 130 & 0 & -30 \\ -31 & 30 & 101 \end{bmatrix}$. In [1] it was shown that B is eventually positive, and in fact $B^k > 0$ for $k \geq 10$.

Let $A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$. Then $A^k > 0$ for $k \geq 2$, hence A is eventually positive.

Then

$$B \otimes A = \frac{1}{100} \begin{bmatrix} 260 & 390 & -60 & -90 & 0 & 0 \\ 130 & 0 & -30 & 0 & 0 & 0 \\ 260 & 390 & 0 & 0 & -60 & -90 \\ 130 & 0 & 0 & 0 & -30 & 0 \\ -62 & -93 & 60 & 90 & 202 & 303 \\ -31 & 0 & 30 & 0 & 101 & 0 \end{bmatrix}.$$
Moreover \((B \otimes A)^{10} > 0\) and \((B \otimes A)^{11} > 0\), so \(B \otimes A\) is eventually positive and \(\text{sgn}(B \otimes A)\) is a PEP sign pattern with reducible positive part.

Any 0 in \(\text{sgn}(B \otimes A)\) from Example 3.3 may be changed to \(-\) to get yet another PEP sign pattern with reducible positive part.

REFERENCES

